π -CYCLOPENTADIENYLS OF NICKEL(II) IV*. S-BONDED ORGANONICKEL COMPOUNDS: S-SULFINATO- AND THIOLATO-NICKEL COMPOUNDS

MASAO SATO, FUMIE SATO, NOBUKO TAKEMOTO AND KAZUYOSHI IIDA

Department of Chemical Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo (Japan) (Received June 29th, 1971)

SUMMARY

 π -Cyclopentadienylbis(tri-n-butylphosphine)nickel chloride reacts with sodium benzenesulfinate and sodium *p*-toluenesulfinate in aqueous solution at room temperature to give π -cyclopentadienyl-S-(benzenesulfinato) (tri-n-butylphosphine)nickel, π -C₅H₅Ni(PBu₃)SO₂Ph and π -cyclopentadienyl-S-(*p*-toluenesulfinato)(tri-nbutylphosphine)nickel, π -C₅H₅Ni(PBu₃)SO₂C₆H₄CH₃-*p*, respectively. It reacts similarly with sodium benzenethiolate and sodium α -toluenethiolate in aqueous solution at room temperature to give π -cyclopentadienyl(benzenethiolato)(tri-n-butylphosphine)nickel, π -C₅H₅Ni(PBu₃)SPh and π -cyclopentadienyl(α -toluenethiolate)-(tri-n-butylphosphine)nickel, π -C₅H₅Ni(PBu₃)SCH₂Ph, respectively.

 π -C₅H₅Ni(PBu₃)SH reacts with phenylacetylene to give π -C₅H₅Ni(PBu₃)-SCPh=CH₂, but with diphenylacetylene it gives (π -C₅H₅)₂Ni₂(PhC=CPh).

INTRODUCTION

It was recently observed that π -cyclopentadienylbis(tri-n-butylphosphine)nickel chloride reacts readily with various anions (X⁻) in the aqueous solution to give ionic or covalent organonickel compounds^{1,2}.

$$[\pi - C_5H_5Ni(PBu_3)_2]^+Cl^- + X^- \rightarrow [\pi - C_5H_5Ni(PBu_3)_2]^+X^-$$

$$(X = NCO, NCS, N_3, ClO_4, ClO_3, NO_3 \text{ and } NO_2)$$

$$[\pi - C_5H_5Ni(PBu_3)_2]^+Cl^- + X^- \rightarrow \pi - C_5H_5Ni(PBu_3)SH$$

$$(X = CN \text{ and } SH)$$

Though SH⁻ reacts with $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ to give π -C₅H₅Ni(PBu₃)-SH in good yield, OH⁻ does not give a corresponding organonickel compound, and we are thus interested in the bonding between nickel and sulfur. We now describe the reaction of sodium sulfinates and sodium thiolate with $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻, and the reactions of π -C₅H₅Ni(PBu₃)SH with acetylenes.

J. Organometal. Chem., 34 (1972)

^{*} For part III, see ref. 2.

RESULTS AND DISCUSSION

 $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ (I) and C₆H₅SO₂Na reacted in aqueous solution to give green crystals which had the molecular formula π -C₅H₅Ni(PBu₃)SO₂C₆H₅ (II). Elementary analysis and proton NMR spectrum are consistent with the formula assigned. The IR spectrum between 1000 and 1200 cm⁻¹ is similar to that reported for the S-bonded sulfinato compounds³, and (II) was thus formulated as π -cyclopentadienyl-S-(benzenesulfinato)(tri-n-butylphosphine)nickel.

$$[\pi - C_5H_5Ni(PBu_3)_2]^+Cl^- + NaSO_2C_6H_5 \rightarrow \pi - C_5H_5Ni(PBu_3)SO_2C_6H_5$$
 (II)

The reaction of (I) with p-CH₃C₆H₄SO₂Na gave the green S-bonded sulfinato complex π -C₅H₅Ni(PBu₃)SO₂C₆H₄CH₃-p (III).

Eliminations of SO₂ from S-sulfinato-metal complexes have been reported⁴, but no thermal elimination occurred up to 150° with complexes (II) and (III).

The complex (I) reacted similarly with NaSPh and NaSCH₂Ph in the aqueous solution to give π -C₅H₅Ni(PBu₃)SPh (IV) and π -C₅H₅Ni(PBu₃)SCH₂Ph (V), respectively.

The reaction of π -C₅H₅Ni(PBu₃)SH with phenylacetylene

Phenylacetylene reacted with π -C₅H₅Ni(PBu₃)SH in boiling benzene to give green crystals of the formula π -C₅H₅Ni(PBu₃)SC₂H₂Ph(VI)in 17% yield (based on Ni). The IR spectrum of (VI) does not show the absorption near 2100 cm⁻¹ characteristic of a C=C stretching vibration. The proton NMR spectrum in CD₃COCD₃ showed multiplets centered at τ 2.7–2.8 ppm due to the phenyl protons (intensity 5), one sharp singlet at τ 4.65 ppm due to the π -cyclopentadienyl protons (intensity 5), complex multiplets at τ 8.2–9.3 ppm due to the protons of tri-n-butylphosphine (intensity 27) and a singlet at τ 3.35 ppm (intensity 2). There seems little doubt that the phenylacetylene has inserted into the S–H bond.

$$\pi - C_5 H_5 Ni(PBu_3)SH + PhC \equiv CH \rightarrow \pi - C_5 H_5 Ni(PBu_3)S$$

$$Ph'$$

$$C = CH_2$$

$$(VI)$$

In contrast with the above results, treatment of diphenylacetylene with π -C₅H₅-Ni(PBu₃)SH did not give the insertion product, but the complex $(\pi$ -C₅H₅)₂Ni₂-(PhC=CPh)⁵, (VII), was obtained in 45% yield.

Some properties of the new complexes prepared are listed in Table 1.

EXPERIMENTAL

 $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ and π -C₅H₅Ni(PBu₃)SH were prepared as previously described². Benzene, n-hexane, n-pentane and water were purified in the usual ways and degassed before use. IR spectra were recorded on a JASCO IR-G spectrometer. Proton NMR spectra were recorded on a JEOL-C-60-NMR spectrometer with tetramethylsilane as internal standard.

All experiments were conducted under dry nitrogen.

J. Organometal. Chem., 34 (1972)

Complex	Colour	М.р. (°С)	Proton NMR spectra, r values (ppm)			
			π -C ₅ H ₅	PBu ₃	Ph	Other
(II)	Green	116.5-117.5	5.18 (5)	8.1-9.2 (27)	2.5-2.8 (5)	_, · · · ·
Ìν́)	Green	4546	5.92 (5)	8.3-9.3 (27)	2.6-2.8	
					3.1-3.4 (5)	
(V)	Brown	31.5-32.0	4.84 (5)	8.3-9.3 (27)	2.8-2.9 (5)	CH ₂ 5.7 (2)
(VI)	Green	55-56	4.65 (5)	8.2–9.3 (27)	2.7-2.9 (5)	=CH ₂ 3.35 (2)

TABLE 1

SOME PROPERTIES OF THE NEW COMPLEXES

The reaction of $[\pi - C_5 H_5 Ni(PBu_3)_2]^+ Cl^-$ with $NaSO_2Ph^+$

NaSO₂Ph (3 mmoles) in 20 ml of water was added to a solution of 1 mmole of $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ in 50 ml of water at room temperature. A green oil appeared immediately. The oil was taken up in 50 ml of benzene and the benzene solution was dried over anhydrous calcium chloride. The solution was evaporated *in vacuo* and the residue was recrystallized from n-hexane to give (II) as green crystals, m.p. 116.5-117.5°, in 95% yield. (Found: C, 58.52; H, 8.03; S, 6.70. C₂₃H₃₇NiO₂PS calcd.: C, 59.13; H, 7.93; S, 6.85%.)

The reaction of $[\pi - C_5 H_5 Ni(PBu_3)_2]^+ Cl^-$ with $NaSO_2C_6H_4CH_3$ -p

A similar procedure with 3 mmoles of NaSO₂C₆H₄CH₃-*p* and 1 mmole of $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ gave (III) as green crystals, m.p. 97.0–97.5°, in 98% yield. (Found: C, 59.85; H, 8.38; S, 6.52. C₂₄H₃₉NiO₂PS calcd.: C, 59.93; H, 8.32; S, 6.64%)

The reaction of $[\pi - C_5 H_5 Ni(PBu_3)_2]^+ Cl^-$ with NaSPh

Similarly from the reaction with NaSPh (IV) was obtained as green crystals, m.p. $45.0-46.0^{\circ}$ in 95% yield. (Found : C, 63.20; H, 7.62; mol.wt. cryoscopic in benzene 402. C₂₃H₃₇NiPS calcd.: C, 63.49; H, 8.53%; mol.wt., 434.7.)

The reaction of $[\pi - C_5 H_5 Ni(PBu_3)_2]^+ Cl^-$ with NaSCH₂Ph

NaSCH₂Ph (3 mmoles) in 20 ml of water was added to a solution of 1 mmole of $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ in 50 ml of water at room temperature. A brown precipitate immediately appeared. The usual working-up gave (V) as brown crystals, m.p. 31.5–32.0°, 90% yield. (Found: C, 63.94; H, 9.34; S, 7.47; mol.wt. cryoscopic in benzene, 413. C₂₄H₃₉NiPS calcd.: C, 64.18; H, 8.69; S, 7.15%; mol.wt., 449.)

The reaction of π -C₅H₅Ni(PBu₃)SH with PhC=CH

To 3 mmoles of π -C₅H₅Ni(PBu₃)SH in 30 ml of benzene, was added 30 mmoles of PhC=CH. The mixture was refluxed for 12 h. Chromatography on silica gel with 50% benzene/n-hexane as the eluant gave material which was recrystallized from n-hexane to give (VI) as green crystals, m.p. 55.0–56.0°, in 17% yield. (Found : C, 65.10; H, 8.55; S, 6.90. C₂₅H₃₉NiPS calcd.: C, 65.11; H, 8.47; S. 6.95%.)

J. Organometal. Chem., 34 (1972)

The reaction of π -C₅H₅(NiPBu₃)SH with PhC=CPh

To 3 mmoles of π -C₅H₅Ni(PBu₃)SH in 30 ml of benzene was added 28 mmoles of PhC=CPh. The mixture was warmed at 50° for 24 h, and the colour changed from brown to green. Working-up as in the preceding experiment gave (VII) as green crystals, m.p. 148.8–149.5°, (lit.⁵ 149–150°) in 45% yield. (Found: C, 67.62; H, 4.70. C₂₄H₂₀Ni₂ calcd.: C, 67.70; H, 4.7%.)

REFERENCES

- 1 M. SATO, F. SATO AND T. YOSHIDA, J. Organometal. Chem., 26 (1971) C49.
- 2 M. SATO, F. SATO AND T. YOSHIDA, J. Organometal. Chem., in press.
- 3 J. P. BIBLER AND A. WOJCICKI, J. Amer. Chem. Soc., 88 (1966) 4846; P. J. POLLICK, J. P. BIBLER AND A. WOJCICKI, J. Organometal. Chem., 16 (1969) 201.
- 4 C. P. COOK AND G. S. JANHAL, Can. J. Chem., 45 (1967) 301.
- 5 J. F. TILNEY-BASSETT AND O. S. MILLS, J. Amer. Chem. Soc., 81 (1959) 4757.

J. Orgaometal. Chem., 34 (1972)